Files
medreport_mrb2b/app/home/(user)/_lib/server/ai-actions.ts
2025-10-28 16:09:06 +02:00

325 lines
8.5 KiB
TypeScript

'use server';
import { AccountWithParams } from '@/packages/features/accounts/src/types/accounts';
import {
AnalysisResponse,
Patient,
} from '@/packages/features/doctor/src/lib/server/schema/doctor-analysis-detail-view.schema';
import { getLogger } from '@/packages/shared/src/logger';
import { getSupabaseServerClient } from '@/packages/supabase/src/clients/server-client';
import OpenAI from 'openai';
import PersonalCode from '~/lib/utils';
import {
AnalysisResponses,
ILifeStyleResponse,
PROMPT_NAME,
} from '../../_components/ai/types';
import { OrderAnalysisCard } from '../../_components/order-analyses-cards';
export async function updateLifeStyle({
account,
analysisResponses,
isDoctorView = false,
aiResponseTimestamp,
}: {
account: AccountWithParams;
analysisResponses?: AnalysisResponses;
isDoctorView?: boolean;
aiResponseTimestamp: string;
}): Promise<ILifeStyleResponse> {
const LIFE_STYLE_PROMPT_ID = process.env.PROMPT_ID_LIFE_STYLE;
if (!LIFE_STYLE_PROMPT_ID || !account?.personal_code) {
return {
lifestyle: [],
summary: null,
};
}
const openAIClient = new OpenAI();
const supabaseClient = getSupabaseServerClient();
const { gender, age } = PersonalCode.parsePersonalCode(account.personal_code);
const weight = account.accountParams?.weight || 'unknown';
const height = account.accountParams?.height || 'unknown';
const isSmoker = !!account.accountParams?.isSmoker;
const cholesterol =
analysisResponses
?.find((ar) => ar.analysis_name_lab === 'Kolesterool')
?.response_value.toString() || 'unknown';
const ldl =
analysisResponses
?.find((ar) => ar.analysis_name_lab === 'LDL kolesterool')
?.response_value.toString() || 'unknown';
const hdl =
analysisResponses
?.find((ar) => ar.analysis_name_lab === 'HDL kolesterool')
?.response_value.toString() || 'unknown';
const vitamind =
analysisResponses
?.find((ar) => ar.analysis_name_lab === 'Vitamiin D (25-OH)')
?.response_value.toString() || 'unknown';
try {
const response = await openAIClient.responses.create({
store: false,
prompt: {
id: LIFE_STYLE_PROMPT_ID,
variables: {
gender: gender.value,
age: age.toString(),
weight: weight.toString(),
height: height.toString(),
cholesterol,
ldl,
hdl,
vitamind,
is_smoker: isSmoker.toString(),
},
},
});
await supabaseClient
.schema('medreport')
.from('ai_responses')
.insert({
account_id: account.id,
prompt_name: PROMPT_NAME.LIFE_STYLE,
prompt_id: LIFE_STYLE_PROMPT_ID,
input: JSON.stringify({
gender: gender.value,
age: age.toString(),
weight: weight.toString(),
cholesterol,
ldl,
hdl,
vitamind,
is_smoker: isSmoker.toString(),
}),
latest_data_change: aiResponseTimestamp,
response: response.output_text,
is_visible_to_customer: !isDoctorView,
});
const json = JSON.parse(response.output_text);
return json;
} catch (error) {
console.error('Error calling OpenAI: ', error);
return {
lifestyle: [],
summary: null,
};
}
}
export async function updateRecommendations({
analyses,
analysisResponses,
account,
aiResponseTimestamp,
}: {
analyses: OrderAnalysisCard[];
analysisResponses?: AnalysisResponses;
account: AccountWithParams;
aiResponseTimestamp: string;
}) {
const RECOMMENDATIONS_PROMPT_IT =
process.env.PROMPT_ID_ANALYSIS_RECOMMENDATIONS;
if (!RECOMMENDATIONS_PROMPT_IT || !account?.personal_code) {
console.error('No prompt ID for analysis recommendations');
return [];
}
const openAIClient = new OpenAI();
const supabaseClient = getSupabaseServerClient();
const { gender, age } = PersonalCode.parsePersonalCode(account.personal_code);
const weight = account.accountParams?.weight || 'unknown';
const formattedAnalysisResponses = analysisResponses?.map(
({
analysis_name_lab,
response_value,
norm_upper,
norm_lower,
norm_status,
}) => ({
name: analysis_name_lab,
value: response_value,
normUpper: norm_upper,
normLower: norm_lower,
normStatus: norm_status,
}),
);
const formattedAnalyses = analyses.map(({ description, title }) => ({
description,
title,
}));
try {
const response = await openAIClient.responses.create({
store: false,
prompt: {
id: RECOMMENDATIONS_PROMPT_IT,
variables: {
analyses: JSON.stringify(formattedAnalyses),
results: JSON.stringify(formattedAnalysisResponses),
gender: gender.value,
age: age.toString(),
weight: weight.toString(),
},
},
});
await supabaseClient
.schema('medreport')
.from('ai_responses')
.insert({
account_id: account.id,
prompt_name: PROMPT_NAME.ANALYSIS_RECOMMENDATIONS,
prompt_id: RECOMMENDATIONS_PROMPT_IT,
input: JSON.stringify({
analyses: formattedAnalyses,
results: formattedAnalysisResponses,
gender,
age,
weight,
}),
latest_data_change: aiResponseTimestamp,
response: response.output_text,
is_visible_to_customer: false,
});
const json = JSON.parse(response.output_text);
return json.recommended;
} catch (error) {
console.error('Error getting recommendations: ', error);
return [];
}
}
export async function generateDoctorFeedback({
patient,
analysisResponses,
aiResponseTimestamp,
}: {
patient: Patient;
analysisResponses: AnalysisResponse[];
aiResponseTimestamp: string;
}): Promise<string> {
const DOCTOR_FEEDBACK_PROMPT_ID = process.env.PROMPT_ID_DOCTOR_FEEDBACK;
if (!DOCTOR_FEEDBACK_PROMPT_ID) {
console.error('No secrets for doctor feedback');
return '';
}
const openAIClient = new OpenAI();
const supabaseClient = getSupabaseServerClient();
const formattedAnalysisResponses = analysisResponses?.map(
({
analysis_name,
response_value,
norm_upper,
norm_lower,
norm_status,
}) => ({
name: analysis_name,
value: response_value,
normUpper: norm_upper,
normLower: norm_lower,
normStatus: norm_status,
}),
);
try {
const response = await openAIClient.responses.create({
store: false,
prompt: {
id: DOCTOR_FEEDBACK_PROMPT_ID,
variables: {
analysesresults: JSON.stringify(formattedAnalysisResponses),
},
},
});
await supabaseClient
.schema('medreport')
.from('ai_responses')
.insert({
account_id: patient.userId,
prompt_name: PROMPT_NAME.FEEDBACK,
prompt_id: DOCTOR_FEEDBACK_PROMPT_ID,
input: JSON.stringify({
analysesresults: formattedAnalysisResponses,
}),
latest_data_change: aiResponseTimestamp,
response: response.output_text,
});
return response.output_text;
} catch (error) {
console.error('Error getting doctor feedback: ', error);
return '';
}
}
export async function confirmPatientAIResponses(
patientId: string,
aiResponseTimestamp: string,
recommendations: string[],
isRecommendationsEdited: boolean,
) {
const logger = await getLogger();
const supabaseClient = getSupabaseServerClient();
const { error } = await supabaseClient
.schema('medreport')
.from('ai_responses')
.update({
is_visible_to_customer: true,
})
.eq('latest_data_change', aiResponseTimestamp)
.eq('account_id', patientId)
.eq('prompt_name', PROMPT_NAME.LIFE_STYLE);
if (error) {
logger.error(
{ error, patientId, aiResponseTimestamp },
'Failed updating life style',
);
}
const { error: _error } = await supabaseClient
.schema('medreport')
.from('ai_responses')
.update({
is_visible_to_customer: true,
...(isRecommendationsEdited && {
response: JSON.stringify({
why: 'This was edited by doctor',
recommended: recommendations,
}),
}),
})
.eq('latest_data_change', aiResponseTimestamp)
.eq('account_id', patientId)
.eq('prompt_name', PROMPT_NAME.ANALYSIS_RECOMMENDATIONS);
if (_error) {
logger.error(
{
error,
aiResponseTimestamp,
patientId,
isRecommendationsEdited,
},
'Failed updating analysis recommendations',
);
}
}