Files
medreport_mrb2b/app/home/(user)/_lib/server/load-recommendations.ts
2025-10-21 16:04:01 +03:00

142 lines
4.1 KiB
TypeScript

import { cache } from 'react';
import { AccountWithParams } from '@/packages/features/accounts/src/types/accounts';
import { createUserAnalysesApi } from '@/packages/features/user-analyses/src/server/api';
import { getSupabaseServerClient } from '@/packages/supabase/src/clients/server-client';
import { Database } from '@/packages/supabase/src/database.types';
import OpenAI from 'openai';
import PersonalCode from '~/lib/utils';
import { PROMPT_NAME } from '../../_components/ai/types';
import { OrderAnalysisCard } from '../../_components/order-analyses-cards';
export const loadRecommendations = cache(recommendationsLoader);
type AnalysisResponses =
Database['medreport']['Functions']['get_latest_analysis_response_elements_for_current_user']['Returns'];
const getLatestResponseTime = (items: AnalysisResponses) => {
if (!items?.length) return null;
let latest = null;
for (const it of items) {
const d = new Date(it.response_time);
const t = d.getTime();
if (!Number.isNaN(t) && (latest === null || t > latest.getTime())) {
latest = d;
}
}
return latest;
};
async function recommendationsLoader(
analyses: OrderAnalysisCard[],
account: AccountWithParams | null,
): Promise<string[]> {
if (!process.env.OPENAI_API_KEY) {
return [];
}
if (!account?.personal_code) {
return [];
}
const supabaseClient = getSupabaseServerClient();
const userAnalysesApi = createUserAnalysesApi(supabaseClient);
const analysisResponses = await userAnalysesApi.getAllUserAnalysisResponses();
const analysesRecommendationsPromptId =
process.env.PROMPT_ID_ANALYSIS_RECOMMENDATIONS;
const latestResponseTime = getLatestResponseTime(analysisResponses);
const latestISO = latestResponseTime
? new Date(latestResponseTime).toISOString()
: new Date('2025').toISOString();
if (!analysesRecommendationsPromptId) {
console.error('No prompt ID for analysis recommendations');
return [];
}
const previouslyRecommended = await supabaseClient
.schema('medreport')
.from('ai_responses')
.select('*')
.eq('account_id', account.id)
.eq('prompt_id', analysesRecommendationsPromptId)
.eq('latest_data_change', latestISO);
if (previouslyRecommended.data?.[0]?.response) {
return JSON.parse(previouslyRecommended.data[0].response as string)
.recommended;
}
const openAIClient = new OpenAI();
const { gender, age } = PersonalCode.parsePersonalCode(account.personal_code);
const weight = account.accountParams?.weight || 'unknown';
const formattedAnalysisResponses = analysisResponses.map(
({
analysis_name_lab,
response_value,
norm_upper,
norm_lower,
norm_status,
}) => ({
name: analysis_name_lab,
value: response_value,
normUpper: norm_upper,
normLower: norm_lower,
normStatus: norm_status,
}),
);
const formattedAnalyses = analyses.map(({ description, title }) => ({
description,
title,
}));
let response;
try {
response = await openAIClient.responses.create({
store: false,
prompt: {
id: analysesRecommendationsPromptId,
variables: {
analyses: JSON.stringify(formattedAnalyses),
results: JSON.stringify(formattedAnalysisResponses),
gender: gender.value,
age: age.toString(),
weight: weight.toString(),
},
},
});
} catch (error) {
console.error('Error calling OpenAI: ', error);
return [];
}
const json = JSON.parse(response.output_text);
try {
await supabaseClient
.schema('medreport')
.from('ai_responses')
.insert({
account_id: account.id,
prompt_name: PROMPT_NAME.ANALYSIS_RECOMMENDATIONS,
prompt_id: analysesRecommendationsPromptId,
input: JSON.stringify({
analyses: formattedAnalyses,
results: formattedAnalysisResponses,
gender,
age,
weight,
}),
latest_data_change: latestISO,
response: response.output_text,
});
} catch (error) {
console.error('Error saving AI response: ', error);
}
return json.recommended;
}